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Abstract— This paper presents an innovative and scalable 
methodology named CONDUCTS (CONsumption DUration 
Curve Time Series) to discover residential electricity 
consumption behaviours over time. CONDUCTS exploits data 
stream processing in time windows jointly with unsupervised 
machine learning on time-independent data. Specifically, time 
series consumption data for every consumer is split into N time 
windows. For a particular time window, a duration curve is 
calculated providing significant shape-based information 
disregarding temporal aspects. Each duration curve is sampled 
according to statistical characteristics and its relevant shape is 
captured. Therefore, every individual is represented by the 
evolution of N simplified duration curves. A cluster analysis, 
based on the K-means algorithm and the Euclidean distance, 
provides the different consumer profiles in a given time window. 
CONDUCT's current implementation runs on Apache Spark, a 
state-of-the-art distributed computing framework. As a case 
study, CONDUCTS has been experimentally assessed on the real 
hourly metered data collected in the time frame of one year for a 
large number of Spanish residential consumers. The experiments 
highlighted CONDUCT's ability to identify time-variable well-
cohesive and well-separated groups of individual electricity 
consumption patterns with similar characteristics. 
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I.  INTRODUCTION  

The knowledge of the consumers’ electrical behaviour is a 
key aspect for various electrical system operators, such as 
distribution system operators, aggregators and retailers. One of 
the main interests of these operators is to obtain consistent 
groups of consumers exhibiting similar characteristics in the 
way they use electricity in a given time period. In the 
commercial dataset of an electric company, each consumer is 
associated with its contract information (i.e., voltage supply, 
contract power). Depending on the energy meter installed, 
information on the energy consumption in a given time period 
is also available. Grouping the consumers on the basis of 

contract information and energy consumption in a given time 
period is a simple way to proceed. However, in this way the 
grouping is found as a snapshot for the given period, and the 
details on the shape of the energy consumption during time are 
not considered. 

This paper introduces a further way to use the time series 
data to provide significant shape-based information 
disregarding the temporal dimension. The proposed 
methodology, named CONDUCTS  (CONsumption DUration 
Curve Time Series) exploits data stream processing jointly with 
unsupervised machine learning in order to identify patterns of 
individual electricity consumption and consumer behaviour 
over time. After the normalisation with respect to the contract 
power, the duration curve is constructed by ordering the 
normalised hourly consumption in the descending order. 
Statistics on deciles (features) are used to model the duration 
curve trend and used as inputs of the cluster analysis. The latter 
is performed over time windows considering weekdays and 
weekend days separately and for a specific number of weeks. 
Cluster analysis, based on the K-Means algorithm and 
Euclidean distance, is aimed at defining time-variable clusters 
representing the variety of the behaviour of the consumer 
groups at different time periods during the year. The 
CONDUCTS methodology exploits the computational 
advantages of state-of-the-art distributed computing 
frameworks: the current implementation runs on the widely-
popular Apache Spark to quickly analyse very large data 
collections. As a case study, CONDUCTS has been validated 
on real hourly-metered electricity consumption collected in 
Spain. Experimental results, obtained on time series related to 
more than 500,000 consumers monitored every hour for one 
year, demonstrate the effectiveness of the proposed approach in 
discovering well-cohesive and well-separated groups of 
consumers with similar electricity consumption behaviours.  



The next sections of this paper are organised as follows. 
Section II discusses related works. Section III details the 
proposed methodology. Section IV reports and discusses the 
experimental results obtained on real energy consumption data 
for a large set of residential consumers. The last section 
contains the conclusions. 

II. STATE-OF-THE-ART 

The ongoing evolution of smart metering is enabling the 
operators to gather energy consumption data at shorter time 
steps. Thereby, the energy consumption pattern of each 
consumer can be defined with a given time step (e.g., hourly) 
in a given time interval (e.g., daily or weekly). If the 
consumption pattern of each consumer is regular during that 
time interval, namely, the hourly consumption in the different 
days (e.g., for the weekdays) has the same evolution, a typical 
weekday can be defined, and the consumer groups may be 
created by using clustering procedures [1]. This approach is 
usually applied to industrial and commercial consumers. The 
regularity of the patterns also enables the use of the Euclidean 
distance as the metric to determine the differences between 
pairs of patterns. 

However, for household consumers the situation is 
different. Clustering the time series of household consumption 
is a very challenging task, because of many aspects concurring 
in making these time series very different even when the 
consumers have similar characteristics (family composition, 
number and size of the appliances). In fact, the evolution in 
time of the consumption depends on many behavioural aspects, 
among which the presence at home, the willingness to use 
certain appliances in a given day, the regular or irregular way 
to use the appliances at different hours, and the possible 
exploitation of timer-based commands for some appliances. In 
order to improve the quality of the analysis, the incorporation 
of exogenous variables could be useful. For example, in [2] 
socio-demographic factors such as the household size, net 
income and employment status have been considered to impact 
significantly on the electricity consumption. On another point 
of view, in [3] a supervised machine learning is used for 
revealing a number of household characteristics with 
satisfactory accuracy. In both cases, some information used in 
the characterisation or in the validation raises privacy concerns, 
so that the development of a consumer grouping approach 
purely based on the analysis of the time series of the energy 
consumption remains of real interest.  

In a household, generally even the same consumer has no 
regular usage of the appliances in different days. Thereby, even 
the characterisation of an individual consumer is not 
straightforward. As such, trying and forecast the exact hourly 
consumption of an individual household on a multi-day time 
horizon may be a poorly formulated objective. For the same 
reason, the use of the Euclidean distance between two patterns 
would result in high distances between patterns with the same 
appliances just used at different times during the day. Some 
insights may be gained by identifying typical periods of the day 
related with common activities happening in a household. An 
example is given by the four time periods (overnight, breakfast, 

daytime, and evening) identified in [4] to represent different 
peak demand behaviour. 

A better objective is to exploit the information embedded in 
the shape of the energy consumption without the strict 
reference to equidistant points in time. This can be done in 
different ways, but requires clarifying a basic assumption: the 
consumers are price takers, so that they do not change their 
behaviour depending on the electricity price. In this way, the 
electricity consumption time series can be used without adding 
details on the electricity prices and their forecasts. Moreover, in 
the present evolution of the consumer participation in demand 
response programmes [5], the consistent groups of consumers 
may be determined during normal periods without active 
demand response programmes. In this case, the electricity 
consumption time series are the ones contributing to form the 
baselines used to define the rewards following specific demand 
response actions [6]. 

One of the possibilities to overcome the regular sequence of 
the points in the time series is to use dynamic time warping 
(DTW), in which two time series are warped in a non-linear 
way by compressing and stretching the time axis to find the 
better match between each other [7]. However, dynamic time 
warping could exhibit scalability issues because of its 
computation time for large datasets (e.g., with millions of 
consumers) [8]. In addition, cases have been reported of DTW 
averaging inaccuracies in dealing with time series with k-
means clustering [9]. However, the same issues have not been 
found by using k-medoids instead of k-means, and k-medoids 
DTW has been recently used for clustering household data in 
[10]. 

Another possibility to represent the time series information 
without the link to the time axis is to use probability-based 
data. In this case, the pattern data are transformed into 
probability densities by normalising them with respect to the 
total energy consumption in the time period of the pattern 
duration, then ordering the normalised data in the ascending 
order. This representation of the data is used in [11], where an 
adaptive K-means clustering algorithm is exploited to 
determine the number of clusters with a procedure starting 
from a set of cluster centres initialised with a standard K-means 
algorithm, and adding new cluster centres when a data violates 
a threshold based on the mean squared error with respect to the 
closest cluster centre. 

A parallel research effort has been carried out to design and 
develop innovative systems based on Big Data technologies to 
provide different analytics services. Distributed and parallel 
approaches have been proposed in recent years, including 
widespread Big Data frameworks like Apache Hadoop [12], 
which provides the most popular MapReduce implementation, 
and its many extensions and related projects, such as Apache 
Spark [13]. However, the exploitation of such distributed 
frameworks in the energy domain is challenging, because it 
requires a high level of expertise in computer science to 
address both technical issues and the last cutting-edge 
technologies in a properly way.  Some research effort solutions 



have been devoted to designing a general purpose engine [14] 
or tailored to a given application domain, such as thermal 
energy consumption [15] [16] and residential energy use [17]. 

III. THE CONDUCTS METHODOLOGY  

The components of the CONDUCTS methodology, as well 
as the interactions between such components, are shown in Fig. 
1. These components perform two main tasks: (a) data stream 
preprocessing, and (b) self-tuning individual profile 
characterisation. The current implementation of CONDUCTS 
runs on the Apache Spark framework, supporting parallel and 
scalable processing for analytics activities. 

 

 
Fig. 1. The CONDUCTS Architecture. 

A. Data stream preprocessing 

This component addresses three tasks that have been 
proved to be crucial in real-world sensor-provided energy data: 
(i) data normalisation, (ii) time window selection, and (iii) 
creation of the data stream. 

Data normalisation. The choice of the type of data 
normalisation is a key point, as the results are strongly affected 
by the adopted solution. This paper is focused on discovering 
shape-based patterns, removing the effect of the consumption 
level. For this reason, CONDUCTS integrates the 
normalisation with respect to the contract power. Additionally, 
it allows to easily identifying outliers (as consumption greater 
than one after the normalisation) by preserving the data 
distribution. 

Time window selection. As the smart meter records the 
consumption on an hourly basis, it is needed to deal with a 
huge amount of data. The CONDUCTS engine has been 
designed to perform the data analytics task through the data 
stream analysis over a time window. Conceptually, the 
selection of the time window parameter is a strategic decision 
and its optimisation is out of the scope of this paper. 
Nevertheless, the time window length should be able to capture 
different regimes of the external variables as temperature or 
weather conditions and has to be long enough in order to 
include an adequate number of points for clustering purposes. 
Furthermore, weekdays and non-common days (i.e. weekend 
days and a number of special days, corresponding to holidays 
or pre-holidays) have been analysed separately. 

Creation of the data stream. This step identifies the set of 
features to be used as input data for the cluster analysis. 
Specifically, for each consumer the hourly data belonging to 
the same time window have been ordered in descending values 
for a sample of 10% of the consumers. For these duration 
curves within a given time window, the average variations 
between each value and the following one have been 
calculated. Then, these variations have been summed up 
sequentially (obtaining a monotonically increasing curve). The 
resulting curve has been transformed into a curve with values 
ranging from 0 to 1 on the vertical axis, by dividing each value 
by the last value. This curve has been interpreted as a 
cumulative distribution function (CDF), from which the 
deciles have been identified. The cut points on the horizontal 
axis have been identified at the end of the last 9 deciles 
(excluding the first decile, having low variations). Finally, the 
9 cut points have been applied to the duration curve of the 
normalised hourly energy consumption of each consumer, and 
the 9 selected features representing each consumer in the 
given time window have been determined as the average 
values of the duration curves inside the last 9 deciles. 

B. Self-tuning individual profile characterisation 

This CONDUCTS activity entails the discovering of 
groups of individual consumption profiles with a similar trend 
in a specific time window providing the self-tuning of the 
desired number of clusters. It includes three main components: 
(i) a self-tuning clustering algorithm, (ii) clustering 
characterisation, and (iii) clustering assessment. 

The self-tuning clustering algorithm integrates a partition 
clustering algorithm and a strategy to automatically discover 
the desired number of clusters. In particular, CONDUCTS 
uses the K-means algorithm [18] with Euclidean distance, 
which is the most popular clustering algorithm in the 
literature. The objective of this step is to identify groups of 
consumers with similar duration curve profiles in a particular 
time window.  

The K-means algorithm splits the input dataset into K 
groups, where K is a parameter that must be adjusted in 
advance. Each group is represented by its centroid computed 
as the average of all sampled consumer's duration curves in 
the cluster. The selection of the parameter K is crucial due to 
the fact that an automatic strategy has to be applied in the 
CONDUCTS methodology. In this sense, CONDUCTS 
provides a self-tuning strategy. Specifically, for a given time 
window, the clustering session is performed for a wide range 
of K values, calculating for every value of K its SSE (Sum of 
Squared Errors) associated. The obtained SSE values are 
plotted against K to reproduce the graph on which the well-
known ''elbow'' (or ''knee'') criterion [19] is applied: the 
optimal value of K is selected where the gain from adding a 
cluster becomes relatively low, or in other words the SSE 
reduction is considered to be not worth enough compared with 
the increase of complexity in the clustering. 

For what concerns clustering characterisation, 
CONDUCTS characterises the cluster set through different 



methods to highlight the quality of the identified partition 
(e.g., the ability of determining well-separated and cohesive 
groups of individual consumption profiles), as well as to 
provide interesting insights on the nature of the individual 
consumption profiles.  

Specifically, CONDUCTS provides: 

● Centroids-based characteristics to graphically show an 
overview of the discovered cluster sets. Specifically, the 
duration curves corresponding to each cluster centroids 
are plotted to provide a quick and easy visualisation of the 
different average individual profiles representing the 
identified groups. 

● The boxplot distribution [20] for duration curves and the 
corresponding daily time series. CONDUCTS exploits the 
boxplot (also known as whiskers plot) to graphically show 
groups of numerical data (duration curves as well as the 
corresponding time series) through their quartiles. 

● Scatter plot of the duration curves to represent the 
relations between the maximum hourly consumption and 
the average consumption, for each cluster. 

The clustering assessment component evaluates the ability 
of the CONDUCTS engine to correctly perform the cluster 
analysis of individual consumers by analysing data in a given 
time series. To this aim, CONDUCTS integrates the Silhouette 
index [21] to evaluate the quality of the cluster models, which 
measures both intra-cluster cohesion and inter-cluster 
separation. The objective is to evaluate the appropriateness of 
the assignment of a consumer's duration curve to a cluster 
rather than another one. This index evaluates the quality of 
each individual separately. The Silhouette coefficients take 
values in [-1,1]. Negative and positive Silhouette values 
represent wrong and good duration curve placements, 
respectively. Hence, the ideal clustering algorithm splits the 
data in a set of clusters such that all clusters have a Silhouette 
value equal to 1. As an order of magnitude, average Silhouette 
values around 0.2 are already considered good values 
representing clustering results [22]. 

IV. EXPERIMENTAL RESULTS 

Wide ranges of experiments were performed in order to 
assess the effectiveness of CONDUCTS in discovering groups 
of consumers with similar electricity consumption behaviour. 
The experiments have been carried out on real hourly-metered 
data collected during one year (from 2016-05-01 to 2017-04-
30) for 565,662 Spanish residential consumers. The input data 
include the contract power used to normalise the data and 
other information out of the scope of this paper. 

The current implementation of CONDUCTS is a project 
developed in Scala exploiting the K-Means algorithm 
available in MLlib. Experiments have been performed on a 
3.6GHz quadcore Intel Core i7 PC with 32Gbyte main 
memory running a standalone Apache Spark 2.1.0. 

CONDUCTS is configured with different time windows in 
order to separate working and non-working days. A two-

weeks time window is selected for the working days. It is 
important to highlight that ten days (from Monday to Friday) 
are included to be clustered in most of the time windows. 
However, the presence of special days as bank holidays (e.g., 
Christmas) can modify the general behaviour of these days, so 
a particular filtering is carried out in order to eliminate them. 
Additionally, the time windows in the summer period requires 
a special pre-processing as the behaviour in this period is 
totally different to the rest of the year. In particular, a 
constraint is included in order to avoid that working days in 
August could share time windows with working days from 
adjacent months. Non-working days are grouped together with 
the special days, and a single time window is defined for every 
month. 

The results of CONDUCTS over the data set period are 38 
time windows: 26 defined by working days, and 12 by non-
working days. To set automatically the desired number of 
clusters for the K-means algorithm, the method explained in 
Section III.B is exploited. Fig. 2 displays the evolution of the 
SSE over different values of K for the time window (2,3). After 
running this method through the 38 time windows, no 
significant differences appears between them. In order to 
simplify the methodology, a unique K value is finally adopted 
for all time windows. The candidate for K chosen for this study 
has been set to K = 6, that is, the value found for the large 
majority of the time windows with the application of the 
“elbow” criterion. The latter especially does not see any 
improvement when an extra cluster is added and has therefore 
been chosen for this test.  

 
Fig. 2. SSE trend analysis. 

A. Clustering assessment and characterisation 

The objective of this section is to analyse the quality of the 
cluster analysis yielded through CONDUCTS. A first analysis 
based on the Silhouette trend over all time windows has been 
performed for a random sample of 10,000 consumers.  

Fig. 3 shows a stable evolution of the silhouette values 
through time windows for the working days. The results show 
consistently similar values of the indicator throughout the time 
windows used in the analysis. These results demonstrate the 
ability of the CONDUCTS methodology in discovering a good 
set of groups of duration curves. Based on the Silhouette 



values, all the discovered partitions include cohesive and well-
separated groups of duration curves. 

 

 

 

 

 

 

 

Fig. 3. Silhouette values for clusters in each working day time window. 

CONDUCTS provides different insights to characterise the 
cluster set discovered over each time window. Here we 
discuss the results obtained on time window (2,3) 
corresponding to the first two weeks of June. Table I 
summarises the number of consumers grouped in each cluster, 
while Fig. 4 shows the cluster centroids represented by the 9 
features on the horizontal axis.  CONDUCTS discovers three 
large clusters, two medium clusters and a small one. 
Indicatively, the large clusters include consumers with low 
energy utilisation factor (the energy consumption to contract 
power ratio, based on the cluster centroids shown in Fig. 4) 
while medium clusters correspond to consumers with medium 
energy profile, and the smallest cluster represents the subset of 
consumers with high utilisation factor profiles. However, it 
has to be noticed that the partitioning is obtained by using 
shape-based information, not the energy utilisation factor 
directly. 

TABLE I.  NUMBER OF CONSUMERS FOR EACH CLUSTER 

Cluster ID Size 
0 108,993 
1 36,489 
2 174,270 
3 90,207 
4 147,856 
5 7,847 

Number of consumers 565,662 
 

Fig. 5 shows the boxplot of the duration curve of the 9 
selected features driving the cluster analysis. The clustering 
results identify well-separated clusters. Fig. 6 replicates the 
cluster composition for the normalised daily energy 
consumption and reports a boxplot for each cluster. The 
clustering results provide a clear separation among the clusters 
also with respect to this variable.  

Fig. 7 shows the scatter plot representing the relations 
between the maximum and the average normalised hourly 
energy consumption for each cluster. All entries belonging to 
the same cluster are represented with the same colour. 
Furthermore, the different colour intensity highlights the 
presence of possible outliers (from the plot with a = 0.2) or a 
view with more transparency (with a = 0.002) that indicates 

the relatively small overlap between the points belonging to 
the different clusters. It can be noted that the 9-dimensional 
features do not contain explicitly neither the average nor the 
maximum normalised hourly energy consumption.  

 
Fig. 4. Centroid distribution for each cluster. 

 

Fig. 5. Boxplot of the nine features for each cluster.  

 

Fig. 6. Normalised daily energy consumption boxplot for each cluster. 



 

 

Fig. 7. Scatter plot for the average and maximum normalised hourly energy 
consumption of each consumer: colour intensity a = 0.2 (left) vs. colour 
intensity a = 0.002 (right). 

V. CONCLUSION AND FUTURE REASEARCH DIRECTIONS 

This paper proposed an innovative scalable methodology, 
named CONDUCTS, to discover electricity patterns over time. 
CONDUCTS has been tested on a large volume of hourly 
electricity consumption related to more than 500,000 Spanish 
residential consumers monitored for one year. The results 
demonstrated the capability of CONDUCTS to discover good 
partitions over time of consumers with a similar behaviour 
expressed by the duration curves of their hourly consumption. 
A possible extension of this work is the design of a 
methodology to build the electricity profile storyboard for 
each individual based on the cluster results obtained on 
consecutive time windows. The methodology can be used in 
other kind of studies, modifying the data normalisation and/or 
the time windows. Depending on the requirements to be 
fulfilled, these parameters could be adapted in order to split 
the data into smaller slices to be analysed in further steps.  
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