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Form Energy, a Massachusetts based startup, is developing and commercia-
lizing ultra-low cost (<$10/kWh), long duration (>24hr) energy storage systems 
that can match existing energy generation infrastructure globally. These systems 
can reshape the electric system, making renewables fully firm and dispatchable 
year-round.   Form Energy has comprehensively assessed the electrochemical 
landscape and screened for fundamental cost, abundance, and suitability for long 
duration applications. The result is two technology platforms under development, 
an aqueous sulfur (AqS) system, and a proprietary longer duration system.  Addi-
tionally, the company has developed sophisticated analytical tools to model and 
identify highest value applications and ensure a tight product-market fit.

Foundation

Enel Foundation is non-profit organization focusing on the crucial role of cle-
an energy to ensure a sustainable future for all. By developing partnerships with 
pre-eminent experts and institution across the globe, leveraging on the vast know-
ledge of its founders, Enel Foundation conducts research to explore the implica-
tions of global challenges in the energy domain and offers education programs to 
the benefit of talents in the scientific, business and institutional realms.



Stopping anthropogenic climate change is a major achievement we, individually 
and collectively, aspire to, and believe is within reach. One of many reasons for 
hope: our ability to cooperate with others to contribute to something bigger than 
ourselves, a uniquely human trait that makes us the awesome species we are. 
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Note from the authors

Renewables widespread adoption across the globe is at the core of sustainable 
energy transition just for all. 
To effectively manage larger scale of variable renewable energy, power system 
flexibility is the name of the game and indeed storage is and will be one of the 
core enablers of decarbonized energy systems. 
In the United States Corporate Power Purchase Agreements (PPAs) are a 
major driving force for renewable power deployment. With deeper renewables 
penetration, energy intermittency is causing an increase in risks borne by parties 
to a PPA, and will require effective mitigation to enable the continuation of fast-
paced deployments.
In this work, we use FormWare™, a proprietary asset optimization software 
developed by Form Energy, to explore the impact of increased volume and basis 
risk on the distribution of returns for long-term contracted windfarms in the 
Southwest Power Pool (SPP) footprint, under a simple contract for differences 
and operating in a day-ahead / real-time market environment. Quantitative results 
demonstrate the ability of storage to effectively manage risk and returns across a 
variety of potential storage technologies, while currently available short-duration 
storage technology shows limited impact. We extend the framework to evaluate 
a range of future renewables scenario and associated risk levels, and offer a 
methodology to quantitatively assess the risk and return benefits of storage for 
financially settled, long-term contracted renewable assets. 
This work has been carried out considering assets located in the US deregulated 
markets, and thanks to the methodology and scientific approach can be extended 
to other locations and markets. In addition, the underlying conditions and risk 
factors (e.g. intrinsic technology features, variability of renewable sources, limited 
long distance energy transmission capacity and congestion, supply-demand 
mismatch etc.) are common across locations and market settings. For this reason, 
the results of this study have, at least qualitatively, a clear implication for a wide 
range of geographies.
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Introduction

2.1  |  Objectives 
The objectives of this paper are twofold:

1_ Evaluate the economic rationale for pairing utility scale renewable energy  
 with Long Duration Energy Storage (LODES), by analyzing the conditions  
 that would allow LODES to increase and/or stabilize the market revenues  
 of a renewable energy facility (specifically, a large utility scale wind farm);
2_ Understand how LODES can provide a key technology to add value and  
 bridge the gap between renewables intermittency and predictable,  
 dispatchable renewables, thus overcoming one of the most substantial  
 barriers to 100% adoption of renewable power.

2.2  |  Scope
Using real-world examples describing current trends in utility scale wind power 
generation farms, notably the trend towards private-party power purchase 
agreements to support climate sustainability goals, the study will assess how 
LODES can provide a key technology to add value and bridge the gap between 
renewables intermittency and predictable, dispatchable renewables.

2.3  |  Study Overview
Electrical power systems are in the first phases of a profound transformation as 
the cost competitiveness of renewables puts irreversible pressure on natural 
gas, coal and nuclear generation, globally. For example, McKinsey anticipates 
that renewables will reach unsubsidized cost competitiveness with coal and gas 
in the majority of geographies in the 2025-2030 time-frame1. In another study, 
the Carbon Tracker Initiative finds that 42% of global operating coal fleet is 
unprofitable in 2018 and 72% will be by 2040, independent of additional climate 
or air pollution policy2. Between 2019 and 2040, renewable energy will be the 
fastest growing source of energy across the world at an average of 7.1% p.a. (BP 
Energy Outlook, 2019).

2

1  McKinsey, Energy Insight Global Energy Perspective. January 2019
2  The Carbon Tracker, Powering Down Coal. November 2018

https://www.mckinsey.com/industries/oil-and-gas/our-insights/global-energy-perspective-2019
https://carbontracker.org/reports/coal-portal/
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In the US, low cost renewables are putting the $112 billion of gas-fired power 
plants currently proposed or under construction -- along with $32 billion of 
proposed gas pipelines to serve these power plants -- at risk of becoming 
stranded assets. While it is true that extremely low cost of fuel is driving a short-
term increase in natural gas-powered generation in parts of the country where 
coal and nuclear plants have retired, the combination of renewable energy cost 
declines, environmental concerns, and regulatory and legislative pressure have 
begun to place the long-term financial viability of natural gas assets in question. 
According to a recent study by the Rocky Mountain Institute3, “across a wide range 
of case studies, regionally specific clean energy portfolios already outcompete 
proposed gas-fired generators, and/or threaten to erode their revenue within the 
next 10 years. This has significant implications for investors in gas projects (both 
utilities and independent power producers) as well as regulators responsible for 
approving investment in vertically integrated territories.”

So what is to stop this powerful march towards a 100% clean, renewable future?

In the same study, McKinsey concludes that natural gas generation will continue 
to play a critical role in the grid of the future acting as a stable baseload and 
dispatchable capacity provider in renewable-heavy systems, thereby hindering 
the objective of a deeply decarbonized grid. In another study specifically focused 
on the European grid, Eurelectric estimates that ~400GW of dispatchable gas 
reserves will be required in high decarbonization scenarios (>80%) to provide 
system flexibility for days with low renewable generation. This gas capacity is in 
addition to 100GW – 200GW of commercial battery technologies4.

In theory, utilities could deploy lithium-ion or other commercially available battery 
technologies in large enough quantities to ride through periods of wind lulls, cloud 
formations or grid outages and offset the need for carbon emitting gas generation. 
Lithium-ion batteries in particular offer high energy and power density, high cycling 
efficiency, low self-discharge rate, fast response time, and low cost of maintenance 
(Argyrou et al, 2018). Moreover, the cost of lithium-ion packs have come down 
rapidly, from $1,160/kWh in 2010 to $176/kWh in 2018 (Goldie-Scot, Bloomberg 
NEF 2019). Correspondingly, lithium-ion has seen a dramatic uptake over recent 
years, dominating 95% of all new energy storage capacity in the US since 2013 and 
seeing a 43% increase in installed capacity from 2017 to 2018 (IHS Markit, 2019).

So, why aren’t commercially available battery technologies good enough?

In reality, even at the lowest price forecasts for lithium-ion or other commercially 
available battery technology, the modular nature of lithium-ion technology 
drives deployment costs linearly higher, making durations greater than 10 hours 
economically challenging. Lithium-ion and other “short-duration” energy storage 
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3  Rocky Mountain Institute, The Economics of Clean Energy Portfolios. 2018
4  Eurelectric, Decarbonization Pathways, page 62. May 2018

https://rmi.org/insight/the-economics-of-clean-energy-portfolios/
https://cdn.eurelectric.org/media/3558/decarbonisation-pathways-all-slideslinks-29112018-h-4484BB0C.pdf
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technologies will have an important role in distributed residential, commercial 
and industrial systems as well as in applications related to electric mobility; 
however, there is a need and opportunity for long duration electrical storage 
systems (LODES), which can be broadly defined as electrical storage systems 
with durations greater than 10 hours.

In a recent review of 40 academic studies of decarbonization pathways, Jenkins 
et al. observe that, “while [renewable] overgeneration arises during periods of 
abundant supply, periods of scarce wind or solar production are the flip side 
of the variability challenge. Prolonged periods of calm wind speeds lasting 
days or weeks during winter months with low solar insolation are particularly 
challenging for [variable renewable energy, VRE]-dominated systems. These 
sustained lulls in available wind and solar output are too long to bridge with 
shorter-duration batteries or flexible demand. Power systems with high VRE 
shares consequently require sufficient capacity from reliable electricity sources 
that can sustain output in any season and for long periods (weeks or longer)”5. 
In acknowledgement of the need, the US Advanced Research Project Agency 
- Energy (ARPA-E) has launched a federally funded grant program to develop 
energy storage systems that provide power to the electric grid for durations 
of 10 to approximately 100 hours with the scope of “opening significant new 
opportunities to increase grid resilience and performance”6.

The rest of this paper will focus on a specific use case where the variable 
nature of renewable generation combined with the limitations of transmission 
infrastructure are already causing operational and financial risks and threatening 
the march to high-renewable futures in the US. In particular, the paper will:

1_ Introduce the concept and general structure of commercial power purchase 
agreements (PPAs), the fastest growing mechanism of contracting and financing 
new renewable generation infrastructure in the US.
2_ Identify operational and financial risks arising from price volatility and 
congestion in regions of the grid with excellent renewable resources but slow 
transmission expansion.
3_ Lay the analytical foundation to investigate how LODES can reduce such 
sources of risk.
4_ Perform extensive modeling and simulation based on real-world scenarios 
to drive quantitative conclusions with regard to the value of LODES in said 
applications.

In conclusion, the last section of the paper will discuss new opportunities for 
hybrid renewable and LODES products well suited for future grids with majority 
fractions of renewable generation.

2  |  Introduction

5  Jesse D. Jenkins, Max Luke, Samuel Thernstrom, Getting to Zero Carbon Emissions in the 
  Electric Power Sector. Volume 2, issue 12, P2498-2510, December 19, 2018.
6  ARPA-E DAYS

https://www.cell.com/joule/pdf/S2542-4351(18)30562-2.pdf
https://www.cell.com/joule/pdf/S2542-4351(18)30562-2.pdf
https://arpa-e.energy.gov/?q=arpa-e-programs/days
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Renewable Energy 
Penetration and Barriers 

3.1  |  Renewable Energy Development
 in the USA 
According to the Energy Information Administration (EIA), US solar capacity 
is projected to grow by 17% in 2020. Wind will similarly grow by 14%.7 Within 
the ISO territories evaluated for this study, namely the Southwest Power Pool 
(SPP) and ERCOT, renewable energy development has accelerated rapidly. 
For example, in 2008, wind energy made up just 3% of SPP’s annual energy 
production. By 2018, wind’s share had increased to 23%. Additionally, SPP 
has reliably met as much as 69% of its load with renewable resources and 
64% with wind alone at a given point in time.8 This momentum is expected 
to continue: total wind capacity in SPP is expected to leap from 20.5 GW 
(2018) to 40.5 GW by 2030.9 Similarly, ERCOT has so far been able to meet 
as much as 54% of its load with wind alone at a given point in time.10 More 
importantly, as of August 2018, 86% of ERCOT’s pipeline of new energy 
projects is either wind or solar, with solar projected to make substantial gains 
through to 2030.11 

This rapid growth will be driven by a number of factors; including favorable 
economic conditions. According to Bloomberg New Energy Finance, by 2050 
the cost of an average PV plant will fall by 71% and wind by 58%, the cost per 
kilowatt hour of lithium ion batteries will fall to roughly $70, global share of coal 
generation will shrink to 11%, and natural gas will only grow modestly.12 
With growing concern over climate change, the American policy environment 
is also increasingly supportive of rapid growth in renewables. For example, 29 

3

7  Tyler Hodge, Short Term Energy Outlook. January 2019.
8  Derek Wingfield. As it turns five, Southwest Power Pool’s Integrated Marketplace is saving 
 billions and enabling big changes in energy dispatch. Southwest Power Pool Press Release 
 February 28, 2019.
9  Gary Cate, presentation. SPP’s Integrated Marketplace and Renewable Energy Evolution. 
  Southwest Power Pool. October 17, 2017.
10  Jeff St. John. Texas Grid Operator Reports Fuel Mix is now 30% Carbon Free. Greentech Media,  
 January 23, 2019. 
11  John Weaver. Texas is going green: 86% of future capacity solar or wind, zero coal. PV Magazine 
  USA. August 23, 2018. 
12  Seb Henbest et al. BNEF New Energy Outlook 2018. Bloomberg NEF 2018.

https://www.eia.gov/todayinenergy/detail.php?id=38053
https://www.spp.org/newsroom/press-releases/as-it-turns-five-southwest-power-pool-s-integrated-marketplace-is-saving-billions-and-enabling-big-changes-in-energy-dispatch/
https://www.spp.org/newsroom/press-releases/as-it-turns-five-southwest-power-pool-s-integrated-marketplace-is-saving-billions-and-enabling-big-changes-in-energy-dispatch/
http://www.neo.ne.gov/renew/wind-working-group/2018conference/CateGarySPP.pdf
https://www.greentechmedia.com/articles/read/a-snapshot-of-texas-growing-appetite-for-wind-and-solar-power#gs.d7db71
https://pv-magazine-usa.com/2018/08/23/texas-going-green-86-of-future-capacity-solar-or-wind-zero-coal/
https://about.bnef.com/new-energy-outlook/
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of the 50 states have established Renewable Portfolio Standards (RPS) as of 
2018, many of which have undergone multiple iterations to ratchet up renewable 
generation requirements further.13 Perhaps the most radical political gesture 
involves the February 2019 publication of the “Green New Deal” Resolution 
by Democratic members of the US Congress that called for 100% renewable 
generation by 2030. 

Large American Commercial and Industrial (C&I) entities have also signaled 
growing appetites for renewable energy, partly out of concern for sustainability, 
having more than doubled the annual record of corporate off-take renewable 
power purchase agreements in 2018 by capacity added.14 In ERCOT alone, 
corporate PPAs jumped from 292 MW in 2017 to 1.661 GW in 2018.15

3.2  |  Obstacles to RES development
Despite the widespread interest across the US to rapidly increase renewable 
energy use, meeting that demand is not without its obstacles. Over recent 
years, the cost of renewables has achieved parity or even better with more 
conventional, baseload technologies. Renewables like wind and solar, however, 
disrupt the conventional methods for planning the daily operation of the electric 
grid because their output fluctuates depending on the availability of the resources 
(solar irradiance and wind speed). This variability forces the grid operator to 
adjust its day-ahead, hour-ahead, and real-time scheduling while also disallowing 
the renewable power producer to sell at the most ideal times, hindering them 
from maximizing revenue. Because wind and solar increase the magnitude of 
sudden power generation shortfalls or excesses, the grid operator requires 
more reserve power ready to respond at a moment’s notice to ensure the grid 
remains balanced. This process starkly contrasts with the baseload power from 
fossil-fuel generators such as coal and natural gas, which can reliably produce 
set quantities of electricity consistently.

Variability manifests in several ways that, without ample availability of storage 
assets, leads to lost economic value. Price volatility --between morning, midday, 
and evening energy prices-- can be most commonly reflected through the classic 
“duck curve”, in which solar production hits its peak output during midday, causing 
demand from other energy sources to be at its lowest. Demand rises rapidly later in 
the day as solar production falls, placing pressure on grid operators to quickly bring 
online other generating sources to compensate. With more renewable penetration 

3  |  Renewable Energy Penetration and Barriers 

13  Galen Barbose. US Renewable Portfolio Standards: 2018 Annual Status Report. Lawrence  
 Berkeley National Laboratory. Electricity Markets & Policy Group. November 2018.
14  Emma Foehringer Merchant. The Year of the Corporate PPA. Greentech Media, December 21,  
 2018.
15 Sarah Krulewitz. Corporates May Be Leaving Millions on the Table by Procuring Wind Over Solar  
 in ERCOT. Greentech Media. February 27, 2019.

https://emp.lbl.gov/publications/us-renewables-portfolio-standards-1
https://www.greentechmedia.com/articles/read/corporates-millions-on-table-by-procuring-wind-over-solar-ercot#gs.d7gsad
https://www.greentechmedia.com/articles/read/corporates-millions-on-table-by-procuring-wind-over-solar-ercot#gs.d7gsad
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without storage, the duck curve becomes increasingly emphasized. Hawaii has 
already experienced days where the duck curve has become so pronounced by 
solar penetration that the load drops below zero at midday, forcing the grid operator 
to backfeed energy, and as the director of Hawaii’s Electro Co’s RE planning states, 
“circuits that send power back up to distribution transformers and substations 
cause all sorts of technical and operational challenges.”16 In this particular scenario, 
storage would enable time-shifting of dispatch so that sources like solar and wind 
would not have to dispatch at the same time that they generate. 

Broadening the perspective from solar duck curves to negative wholesale 
markets presents an even starker picture across the country. According to 
Greentech Media, multiple regional ISOs have logged patterns of renewable 
saturation driving down energy prices to negative states. Even at negative 
prices, renewable plants will often continue to generate when the Production 
Tax Credit17 still allows for positive revenues. 

3  |  Renewable Energy Penetration and Barriers 

16  Dora Nakafuji. Jeff St. John. Hawaii’s Solar Landscape and the “Nessie” Curve. Greentech  
 Media, February 10, 2014.
17  A federal incentive providing financial support for the development of renewable energy.

Table 1
  
2017 congestion (negative 
pricing) in several ISOs 
in the US. SPP had 
the largest number 
of negative hours in 2017.

Negative Wholesales Market Prices by ISO

 Total Negative   Total Opportunity
 Price Hours  Average (Annulal $/MW, 
 (All Price Nodes /Zone) Negative  Average Across Price
ISO Nodes /Zone) Price Nodes /Zone)

CAISO 2,044 -$ 4.57 -$ 667

ERCOT 37 -$ 1.11 -$ 41

ISO-NE 59 -$ 2.62 -$ 77

MISO 71 -$ 2.58 -$ 36

NYISO 0 — —

PJM 38 -$ 1.31 - $ 8

SPP 3,784 -$ 5.36 -$ 1,269

 Source: GTM Research, ISO data

https://www.greentechmedia.com/articles/read/hawaiis-solar-grid-landscape-and-the-nessie-curve#gs.d6ehqh
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Here again, pushing the imbalance between generation and load hits such 
extremes because renewable generators lack control over when they can 
generate (i.e. when the wind blows and when the sun shines). This economic 
representation of lost natural resource efficiency can be ameliorated with 
storage, enabling the discharge of renewable energy to occur when there is 
more balance between supply and demand.

Finally, in instances where continued dispatch of energy would realize negative 
returns or is simply prohibited by the grid operator due to congestion, renewable 
plants may have to curtail production, e.g. go offline, during their finite windows 
of access to the sun or wind. As Figure 7 demonstrates, the incidence of 
curtailment has been escalating each year, corresponding with increased 
renewable penetration.

3  |  Renewable Energy Penetration and Barriers 

Figure 1
  
Curtailment has been 
growing rapidly in recent 
years in CAISO, where 
renewable penetration is 
only approaching 40%.

The burgeoning C&I market is now coping with the above challenges and 
their inherent risks largely without long duration storage as an option. While 
this technology gap continues, C&I off-takers have been turning to increasingly 
complex and exotic financial instruments in order to minimize these risks. 
Companies like Microsoft, for example, have partnered with REsurety, Allianz, 
and Nephila Climate to pioneer the concept of a Volume Firming Agreement 
(VFA), which moves risk related to weather conditions and the market value of 
renewables to insurers.18  

18  Ibid, Emma Foehringer Merchant.
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Storage technology has the potential to change the intermittency drawback 
of renewables by allowing renewable producers to capture their energy and 
discharge it at times when they can fetch adequate returns. More generally, 
pairing storage with renewable generators allows those renewable plants to 
behave more like dispatchable - guaranteeing fixed quantities of electricity on 
deliberate schedules, regardless of the wind or sun shine. This opens the way 
for renewable energy and storage technologies to permeate the market at utility 
scale, allowing the substitution of fossil fuel-based plants with more renewable 
plus storage plants that behave like dispatchable generators. Chapters 5 and 6 
provide a more detailed discussion of existing storage technologies and their 
potential role in addressing renewables intermittency. 

3  |  Renewable Energy Penetration and Barriers 
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Commercial RES, US Example

4.1  |  C&I evolution 
As LODES solutions become increasingly commercialized and available, one 
of the most promising market segments for renewable energy plus storage to 
quickly penetrate is with a newer brand of customer (off-takers) in Commercial 
& Industrial (C&I) entities. One of the fastest growing mechanisms of renewable 
contracting in the United States is the C&I off-taker power purchase agreement. 
C&I off-takers were responsible for a quarter of new solar and wind capacity in 
2018 (Green Tech Media 2018). According to the Rocky Mountain Institute, 2018’s 
volume of corporate off-take agreements reached 6.43 GW of capacity, thereby 
shattering the 2015 record of 3.22 GW (Rocky Mountain Institute Business 
Renewables Center 2018). 

What has spurred the C&I off-taker phenomenon? From the seller’s perspective, 
C&I off-takers represent a burgeoning market that promises rising opportunity 
in developing more renewable generation projects. From the C&I buyer’s 
perspective, renewable PPAs are not only beginning to make economic sense 
but are also enabling corporate entities to achieve sustainability objectives, such 
as offsetting emissions from electricity consumption, in part by taking ownership 
of associated Renewable Energy Credits (RECs) from the project. The rise of C&I 
PPAs provides benefits for both sides. For the developer, it presents a new avenue 
for renewable energy project development with less risk. For the C&I off-taker, it 
ensures increasingly economically attractive scenarios for cheaper and cheaper 
electricity while also achieving sustainability and climate change objectives. 

4.2  |  Current C&I PPA Structures 
 and Limitations 
As the pool of C&I off-takers continues to expand in markets that are seeing 
increasing penetration of renewables, offtake arrangements will need to further 
evolve and become more flexible in order to mitigate the associated risks.  
Currently, C&I PPAs are usually construed as either Physical PPAs or Virtual PPAs. 

Physical PPAs: Physical PPAs are most commonly used by organizations that 
have large concentrated loads. The renewable energy seller builds, owns, and 
operates the project, and sells the output to the C&I off-taker at a specified 
delivery point (market hub, etc.). At that point, the off-taker takes ownership 

4



11

of the energy and gains the associated Renewable Energy Credits (RECs), in 
exchange for the off-taker paying a fixed price. Inherently, the physical PPA 
requires that the energy can be physically exported through the grid from the 
seller to the C&I customer. As a consequence, Physical PPAs are not a viable 
option over considerable distances, even when technically possible, where grid 
congestion charges and multiple ISOs make them economically unsustainable. 
For these reasons this study focuses on virtual PPAs, as they represent a more 
general case.

Virtual PPAs: When Physical PPAs are not possible or not economically 
viable, Virtual PPAs can be an effective alternative. Like with physical PPAs, 
the renewable energy seller builds, owns, and operates the project, and 
delivers the output to a specified delivery point or node. Unlike physical 
PPAs, the seller liquidates the energy locally (i.e. where power is generated) 
at the market price; furthermore, the seller and the C&I off-taker enter a 
contractual arrangement called contract for differences (CfD), whereby the 
off-taker pays the seller the difference between the market price and a fixed 
price (the strike price), when such difference is negative, and the payment is 
reversed, when the difference is positive. Uncertainty in the drivers of that 
market price and how much it will fluctuate constitutes a considerable risk to 
potential C&I customers. This is partly what would make shorter-term PPAs 
more attractive, as that uncertainty is less pronounced the closer the time 
horizon is. Virtual PPAs most often still allow for the C&I customer to own 
the associated RECs from the project, allowing them to take credit for using 
renewable energy. 

While Virtual PPAs have in particular opened up vast opportunity for C&I entities 
to “go renewable” even when not physically receiving the power directly from 
the renewable energy developer, these contracts do carry risks. The C&I off-
taker must have a strong grasp of the various factors that can reduce the local 
market price so that the fixed price that they pay does not exceed it. Among 
the myriad factors that drive the market price is the level of local renewable 
penetration and how much its intermittency can affect the grid. 

Despite their many advantages, today’s renewables PPAs include a number 
of risks to both parties involved in the long-term commitment. The PPA is a 
flexible contract structure that assigns risk across the parties involved in the 
transaction. Depending on the PPA structure, the risks fall on either or both 
parties. Although no hard rules exist, commercial trends have converged over 
time to require parties to typically take on risks they are best positioned to 
manage, or where the bargaining power favors the counterparty. These risks 
stem from the intermittency of the resources, the uncertainty of demand and 
the volatility of prices. The major categories of risk are: 

• Basis risk: the spread in prices between where renewable power is generated 
and where it is delivered (or in the case of virtual PPAs, settled) can be significant. 
This spread, referred to as “basis”, is a function of the transmission capacity 

4  |  Commercial RES, US Example
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between the generation node and, for example, the settlement hub. With many 
renewable projects co-located and, by nature of the resource, correlated, large 
bursts of generation can result in locally depressed prices, in contrast with a large 
settlement hub with much more power liquidity and exposure to a diversified 
generation pool. Consider the case where the off-taker settles the virtual PPA at 
the hub: in that case, the asset owner must sell power at the generation node and 
settle with the off-taker at the hub, incurring a loss if the node prices are lower. 
This exposure is the essence of basis risk. 

• Volume risk: the difference between the forecasted renewable asset 
volume and its actual production volumes can be a source of downside in 
a number of ways. In its simplest form and in the context of a virtual PPA, 
consider an asset owner bidding into the day-ahead market. At the time of 
the bid, a decision is made based on a resource forecast for the next-day. 
If actual volumes fall short, any gap between the volumes committed day-
ahead and the actual production volumes must be purchased from the market, 
often at a penalty that captures the cost to the market of suboptimal marginal 
producer entering the market to cover the shortage. This exposure to forecast 
uncertainty is one form of volume risk.

• Shape risk: if the output of the renewable asset is drastically different from 
the load shape of the C&I user, the value of a PPA as a hedge for the buyer 
against increases in future electricity markets is severely reduced. In the case 
of high local renewable penetration for a buyer and seller in the same hub, 
the output of a renewable asset can drive low nodal prices, while the buyer is 
exposed to high prices in the market where they purchase power coincident 
with their load. This exposure is a form of shape risk. 

In the early days of corporate PPAs, and with relatively low renewables 
penetration on the grid, the impact of such risks on the profitability and value of 
these long-term commitments was small. However, with increased renewables 
penetration and larger price volatility, risk management is, more than ever, a 
key consideration. As with growing congestion and curtailment (showcased 
earlier in this paper) renewable PPA risks will increase drastically with deeper 
renewables penetration, threatening the march towards a decarbonized grid. 
Corporate procurement of renewables rests on more effective mechanisms for 
risk management, for both parties. 

Although PPAs are inherently flexible in how risk is allocated, general market 
trends have emerged and evolved over time to reflect the needs of the various 
parties. Current trends in virtual PPA procurement by corporate off-takers tend 
to assign basis risk to the project owner / developer. Forecast uncertainty 
and associated volume risks is again mainly borne by the asset operator & 
developer, given their deeper understanding of the asset market conditions 
and control of its scheduling & bidding. Shape risk is at present borne by both 
parties – the asset operator / developer is exposed to the hub pricing volatility, 
whereas the off-taker is exposed to the mismatch of their load costs with the 

4  |  Commercial RES, US Example
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PPA revenue. As renewables penetration drives higher volatility in markets, 
managing shape risk is likely to become a more central piece of both virtual 
and physical PPAs. Some recent PPAs have factored in premiums for energy 
delivered during peak demand hours for off-takers. 

One potential approach to PPA risk management is an increased trend towards 
securitization, financial derivatives and complex financial structures. These 
structures - by definition - involve the entry of intermediaries and additional 
overhead costs. In this paper, we focus on a physical storage enabled alternative, 
which acts to fundamentally reduce risk by addressing the intermittency of 
renewables. 

4.3  |  Charting the Pathway for Future
 C&I Off-taker Agreements 
From the perspective of off-takers and developers alike, future long-term off-take 
agreements must effectively manage risk exposure for both parties. 

In general, customers do not want long-run risk exposure, and unless risk 
factors can be tightly managed, shorter-term off-take commitments will become 
prevalent. With shorter long-term off-take agreements, more projects will rely 
in part on future cash flows from merchant revenue which are inherently riskier 
from a revenue certainty perspective. As a result, the cost of borrowing will 
increase and equity financing will constitute a larger fraction of the capital stack, 
increasing the cost of capital for renewable projects. In addition, customers do 
not want to take on basis risk as the complexity of forecasting and hedging 
against basis risk requires specialized knowledge, that falls outside the core 
business for most C&I energy buyers. 

Volume and shape risk are arguably inevitable. Renewable assets production will 
remain uncertain, and the correlation of customer load and prices will always result 
in some level of risk exposure. These risk factors can be effectively managed 
through a number of tools, like better forecasting, and, in liquid markets, financial 
hedges. Customers need a clear and simple formulation that aligns incentives and 
enables effective exchange of risk & return with developers. Many C&I energy 
buyers are fairly sophisticated, but ultimately, off-take contract complexity will act 
to slow down the adoption of corporate PPAs and limit the growth of the segment. 

From a developer’s standpoint, off-take agreements must match the right level 
of risk appetite of commercial off-takers, while allowing for sufficient revenue 
certainty. In markets with capacity value, renewable energy projects can unlock 
significant value if they are able to provide dispatchable power. Unlocking capacity 
value can result in higher certainty for at least a portion of the project revenue. In 
addition, dispatchability can allow for the renewable output to be better matched 
with customer load and market prices, curbing the sources of risk. 

4  |  Commercial RES, US Example
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Our perspective in this paper is that dispatchable renewable power enabled by 
long duration storage can significantly reduce risk for both parties, and enable 
a more effective and clear exchange that simplifies off-take agreements. 
With long duration storage, a dispatchable renewable asset can have higher 
revenue certainty, can be better matched with customer load and structural 
prices regimes (e.g. peak and off-peak), address volume risk through stored 
power, and act as a low-cost conduit for power across high congestion times. 
Quantitative analysis in Chapter 6 will offer a detailed analysis to demonstrate 
the value of storage in managing both risk and return for long-term contracted 
renewable assets. 

4  |  Commercial RES, US Example
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Energy Storage Systems

Energy storage is poised to play a critical role in modernizing grids, making 
them more scalable and resilient, solving emerging energy problems in the 
burgeoning contexts of climate change and rapid urbanization, as well as 
recasting the way that we approach the economics of electricity. The grid of 
the future will require all sorts of storage applications from the micro (home/
EV to grid) to the medium/distribution scale to large transmission scale and 
hybrid applications with utility-scale storage.

To a first order, batteries can be characterized by energy rating, charge and 
discharge power ratings and charge and discharge efficiencies. Energy rating 
indicates how much energy can be held by the battery when it’s fully charged; 
charge and discharge power ratings indicate the maximum power that a 
battery can draw from the grid or supply into the grid; finally, charge and 
discharge efficiencies measure the power losses while the battery is charging 
or discharging. A derivative and useful metric often used to characterize 
batteries is nominal duration, which is the ratio between energy rating and 
discharge power rating; alternatively, an effective duration metric can be 
used, which is calculated by de-rating nominal duration by the discharge 
efficiency. Some technologies, such as flow batteries, allow plant designs 
where energy and power ratings are independent variables, allowing, in 
theory, for flexible duration. Other technologies, such as Li-ion cells, impose 
stringent constraints on battery durations, mostly related to manufacturing 
processes and cell architectures.

5.1  |  Short Duration Storage
Of the battery types that have seen recent growth in the marketplace, 
lithium-ion particularly stands out as a “yardstick” to compare against for 
other emerging storage technologies. Lithium-ion offers high energy and 
power density, high cycling efficiency, low self-discharge rates, fast response 
times, and low cost of maintenance (Argyrou et al, 2018). While the cost 
of lithium-ion has historically been prohibitive, limiting their application to 
high power and energy density ones, such as electric vehicles, these costs 
have been dramatically decreasing. Vehicle packs, which are currently the 
highest volume lithium-ion product, have dropped from $1,160/kWh in 2010 
to $176/kWh in 2018, with projections of under $100/kWh in 2024 (Goldie-
Scot, Bloomberg NEF 2019). In contrast with BNEF’s cell and pack level cost 
estimates, NREL provides plant level cost projections that are nearly twice 
the energy cost for the pack as forecasted by BNEF. Plant level storage costs 
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include additional overhead such as electrical and structural components as 
well as land and construction costs which nearly double the pack level energy 
cost for a 4-hour project and more than triple the pack level cost for a 1-hour 
system. Driven in part by falling costs, Li-ion has seen a dramatic uptake over 
recent years, dominating 95% of all new energy storage capacity in the US 
since 2013 and seeing a 43% increase in installed capacity from 2017 to 2018 
(IHS Markit, 2019). 

However, lithium-ion storage suffers a number of limitations, such as relatively 
quick degradation rates, safety concerns tied to high-profile explosions and 
fire incidents, concerns over the sustainability (and cost) of lithium and other 
essential material mining, among others. Most importantly, project developers 
do not typically use lithium-ion for dispatch applications longer than 4 hours in 
duration because of the modular cost structure of the technology, which today 
make longer duration projects (>4hrs) economically infeasible. This means 
that in the near-term (2-5 years), the value of Li-ion technology is maximized in 
shorter duration applications and especially where the technology really shines 
such as frequency control response. In this study, we also explore the possibility 
of future Li-ion costs, using forecasts for 2020, 2030 and 2040 Li-ion batteries 
to explore longer-duration deployments of the technology. 

For renewable energy to fully penetrate electricity markets, supply rapidly 
growing demand among C&I customers, and supplant the need for fossil-fuel 
based systems, either significant advances in existing technologies or new 
long duration storage technologies will be needed to close the gap. LODES 
will enable renewable energy to provide grid resilience, enable multi-hour time-
shifting and arbitrage, as well as replace intermittency with stability, savings, 
and sustainability and, for C&I customers, to buy utility-scale renewable energy 
on-demand (specific times of day).

5.2  |  Long Duration Storage
LODES can be broadly defined as electrical storage systems with durations 
greater than 10 hours. For example, LODES would be well in the scope of the 
recent ARPA-E federally funded grant program to develop energy storage systems 
that provide power to the electric grid for durations of 10 to approximately 100 
hours with the scope of “opening significant new opportunities to increase grid 
resilience and performance”. Because of the long duration, a critical requirement 
of LODES is a very low $/kWh energy capital cost. 

Traditionally, power assets are categorized by their role in serving the supply 
stack. Baseload assets (like coal & nuclear reactors) are meant to operate at very 
high capacity factors (>80%) to serve the majority of the load requirements. 
Mid-merit assets (like modern CCGT plants) are more flexible and can typically 
provide parts of the baseload function in addition to ramping over days and 
seasons to match cyclical components of load. Peaker plants (like open-cycle 
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combustion turbines, diesel engines or more modern reciprocating engines) 
operate at very low capacity factors (<10%) and are primarily intended to 
address rapid load fluctuations and contribute to higher grid reliability. In a 
future with deep renewables, asset roles shift as large intermittent low 
marginal cost assets become the new source of baseload power, while the 
need for flexible fast-ramping assets increases. This latter role is where long 
duration storage will be most needed. 

An order of magnitude analysis of costs can be instructive here. For example, 
if the installed capital cost of natural gas plant $1,000/kW was used as a 
benchmark, a 10-hour LODES would have to have an energy capital cost of 
less than or equal to $100/kWh and a 100-hour LODES of less than or equal 
to $10/kWh to respectively provide 10 and 100 hour output services cost 
competitively. These prices appear to be beyond the most optimistic price 
projections of currently available technologies at the plant level;19 in particular, 
$10/kWh is well below the sole material cost of Li-ion cells.

The only commercially available option of low-cost, long-duration storage 
today is pumped hydro; unfortunately, as much as the technology is desirable, 
its deployment is geographically limited because of the very specific site and 
environmental requirements. A large class of electrochemical systems, which 
have long been neglected because of their low-rate capabilities and lower 
than Lithium-ion round-trip efficiencies, may very well become the enabling 
technology at the heart of LODES. Systems based on cheap, abundant 
materials such as water, air and certain metals can achieve extremely low $/
kWh cost, at the expense of low round trip efficiencies (in the range 40%-70%) 
and high self-discharge rates (>5%/month). However, these drawbacks should 
be weighed against emerging grid conditions. If future grids do involve large 
amounts of inexpensive renewable electricity, low round-trip efficiencies can 
be tolerated. Moreover, LODES will necessarily have a much smaller yearly 
cycle count than a short-duration storage system and cycle life requirements 
can be correspondingly relaxed from the several thousands of a Lithium-ion 
system to a few hundreds or a few tens for a system with durations between 
10 and 100 hours.

Several new classes of electro-chemical, thermal and mechanical LODES are 
being researched and developed today by academic groups and start-ups across 
the globe and will reach full commercial bankability by the end of the next decade. 
Their maturity will be timely with the next phase of large-scale deployment of 
renewables on the grid. The many cheap hours of storage capacity will allow 
to store excess renewables and avoid congestion during extended periods 
of over-generation and to supply market needs and maintain a high quality of 
electrical service during extended periods of renewable under-generation. The 
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19  It is important to note that although cell-level future Li-ion costs can be as low as $70/ kWh, pack  
 and plant total cost of ownership for a 12 year lifetime exceeds $100/kWh in future forecasts.
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main question of this study is whether inexpensive LODES can make renewable 
generation truly dispatchable at a reasonable cost, at the power plant as well as 
at the grid level, considering here a deregulated market environment. Specifically, 
the study focuses on quantitatively assessing whether LODES can substantially 
reduce basis and volume risk of a renewable farm and make its output more 
dispatchable at a reasonable cost.

The quantitative analysis outlined In Chapter 6 shows how LODES can be 
conveniently integrated in a renewable rich system to neutralize the intermittency 
problem, and offer a quantitative framework to evaluate the value of various 
embodiments of LODES in managing risk in virtual PPAs.

5  |  Energy Storage Systems
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Quantitative Analysis

6.1  |  Overview
In this section, we explore the value of long duration storage in addressing 
market risk factors through a quantitative analysis of long-term contracted 
wind farms on a virtual PPA contract. We explore the effect of basis risk and 
forecast uncertainty on the asset’s revenue distribution, with and without 
storage. The following sections provide an overview of scope & methodology, 
followed by a survey of results from the analysis. The quantitative analysis 
here was performed through FormWare™, Form Energy’s proprietary asset 
management analytics platform. 

6.1.1  |  Objectives

• Demonstrate the value of more than 4 hours of storage in merchant risk
 management
• Provide a quantitative framework to assess the value of long duration
 storage technologies in merchant risk management

6.1.2  |  Scope

Virtual PPAs (described above) are one class of long-term contracted renewable 
assets with large exposure to merchant risks. We focus this quantitative study 
on wind farms on hub-settled virtual PPAs, operating in the Southwestern 
Power Pool (SPP) footprint in a day-ahead and real-time market structure. The 
historical data used for the analysis refer to two years of operations of three 
wind farms operating in SPP. Day-ahead bidding of the wind farms is based 
on state-of-the-art weather forecasts, resulting in an average energy output 
uncertainty of about 15%. The average total energy availability of the farms 
is 90%, and average energy curtailment for congestions is about 5%, with a 
maximum of about 24%.

We also limit our focus on risk factors to two primary sources that are most 
critical today: volume and basis risk. We capture volume risk exposure through 
wind production and market price forecast uncertainty, and resulting penalties 
when production falls short of day-ahead commitments. Basis risk is directly 
reflected in the difference in price between the node and the hub, usually a 
result of local congestion due to correlated wind production. Basis risk exposure 
can be managed through physical storage by arbitering dispatch around nodal 
congestion, effectively smoothing out wind delivery over time. Volume risk 
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Roundtrip Efficiency
(RTE) [%] 30 40 50 60 70 80 90

Energy CapEx
($/kWh) 5 9 17 31 56 104 190

Power CapEx
($/kW) 100 178 316 562 1000

6  |  Quantitative Analysis

Table 2
  
The full range of energy 
storage technology 
specifications modeled 
in this work. 
All combinations of these 
specifications were 
analyzed in this work. 

Many of the data points on this table are not commercially available today. 
However, given the novel nature of this asset class and the extensive activity 
in R&D and venture funding for new long duration storage technologies (e.g. 
the United States ARPA-E DAYS program), we opted for a broad survey of the 
design space, with the objective of providing an understanding of the value of 
various technologies in addressing risk-management challenges. For illustrative 
purposes, we provide a sample of detailed results for a storage specification that 
corresponds to pumped-hydro storage, with an energy and power capex of $5/
kWh and $562/kW, and 80% RTE.

Finally, with deeper renewables penetration, we expect a rise in intermittency 
and associated costs. These costs will in part be internalized by the market. In 
one future trajectory, intermittency costs will manifest in larger basis and higher 
penalties for missing DA (Day Ahead) commitments. To explore these future 
scenarios, and given the difficulty of forecasting, we take a simple approach 
where basis and penalties are increased linearly (i.e. a linear hourly increase 
across the entire year).  

For each case, we analyze the revenue distribution of each farm as is, then contrast 
with the optimized revenue for the same asset with a co-located storage plant. 

6.1.3  |  Methodology

To model the wind farms in a hub-settled virtual PPA environment, we use a 
two-step optimization approach that seeks to mirror the information available to 
the operator trading the output into the markets, and to replicate the uncertainty 
around future conditions as decisions are made. Energy storage sizing and 
operation are focused on managing real-time risk factors only, in particular:

exposure is managed through using storage to fill the shortages where wind 
production is lower than forecasted and resulting DA bids.

In this study, we take a technology-agnostic view to long duration storage. 
We model a wide range of long duration storage technology specifications 
(+200 possibilities) as per the permutations from the following table. 
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Figure 2
  
The dynamic scheduling 
framework used in this 
work to capture the 
trader’s viewpoint in a 
day-ahead / Real-time 
environment, with 
imperfect foresight.

1_ Output shortages corresponding to times when wind generation falls below
  DA commitments predicated on DA forecasts.
2_ Congestion (basis) and other real-time price dynamics unfavorable correlated
 with wind generation.

The end-to-end optimization process is implemented in Form Energy’s 
proprietary asset management software, FormWare™, which optimizes asset 
buildout and dispatch with an hourly resolution for a whole year based on a 
linear programming framework.

A schematic of the process is shown below in figure 2.

There are two rounds of optimization with two decision horizons. In the first 
round, which occurs 12 hours ahead of real time, DA commitments for the wind 
farm are calculated under limited knowledge of wind production and real-time 
prices: P5020 hourly daily forecasts are used for the former and a proprietary 
regression of real-time prices is used for the latter. The output of that optimization 
are DA bids for the wind farm. These bids are assumed to be all committed by 
the market and the corresponding commitments can either be satisfied through 
available production, or through market purchases with a penalty that reflects 
DA/RT spreads (DART spread) and potential regulatory imposed penalties.

In the second round of optimization, which occurs in the day of operation, 
energy storage sizing and dispatch are optimized to minimize penalties 
from missing wind day-ahead commitments and to maximize real-time 
price arbitrage value. Energy storage sizing is optimized considering several 
possible real-time wind and price scenarios to make sure that the storage 
system deployed is robust across several possible operating conditions.

The distribution of wind farm and storage revenue and costs across possible 
wind and price scenarios are subsequently used to estimate average revenue 
and maximum downside, as proxies for risk and return.

20  Refers to a forecast where the expected volumes have an exceedance probability of 50%. 

• Wind, Forecasts
• Day-Ahead Price, Forecasts
•  RT, Forecast 

•  Wind, Forecasts (P50)
•  Day-Ahead Price, Actual
•  RT, Forecast 

•  Wind, Updated Forecasts
•  RT, Actual 

•  Wind, Multiple Forecasts
•  RT, Actual 
•  Multi-Scenario Optimization

Day-Ahead  
Commitment
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In detail, the following steps are used:

1_ We first model the wind asset without any storage, and optimize bidding  
 decisions between the DA and real-time market. To simulate forecast 
 uncertainty, we handicap the optimization algorithm by providing as inputs  
 the P50 forecasts for wind volumes and market prices (and not the real data  
 sets) that would be available to a trader bidding for that power plant, so at  
 the time when DA commitments are decided. This approach reflects the fact  
 that operators place bids in the day-ahead market with a necessarily  
 imperfect and limited knowledge of the future production and prices. 

2_ The DA commitments computed by the model in the first optimization step  
 are locked in as inputs to the second optimization step. These commitments  
 can either be satisfied through available production, or through market  
 purchases with a penalty that reflects DA/RT spreads (DART spread) and  
 potential regulatory imposed penalties. 

3_ We expose the wind farm in the second case to 3 statistically representative  
 wind scenarios that are statistically representative of the volume forecast  
 used in the first optimization step. We explore the distribution of wind farm  
 revenues and compute estimates of average revenue and maximum  
 downside as proxies for return and risk. 

When storage is added to the wind farm, an additional set of decision 
variables are added to the optimization problem, corresponding to the storage 
build size and hourly dispatch. Steps (1) and (2) of the optimization remain the 
same, while in step (3), the storage build and dispatch profile are co-optimized 
across the modelled scenarios. The distribution of wind farm and storage 
revenue and costs are subsequently used to estimate average revenue and 
maximum downside, as proxies for risk and return.

While storage could affect DA bid strategy, the present analysis focuses 
on managing real-time risk factors only, in particular wind shortage and 
corresponding penalties and real-time price dynamics. Future work may 
incorporate storage in DA bid decisions.

6.1.4  |  Data Sets

The data of the wind farms modeled in this work was provided by the generous 
courtesy of the Enel Green Power team, and are here anonymized to mask 
confidential information. They represent different project vintages across the 
geography of SPP, capturing the growth in the PPA market, increase in wind 
turbine capacity factor and evolution of contract terms. We model all the 
farms to be on a simple contract for differences with no hedges, collars or 
other financial instruments. 
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Figure 3
  
Contrasting wind 
production with day-ahead 
forecasts shows the 
limits of hourly resolution 
of current weather 
forecasting data.

Forecast uncertainty manifests in missed day-ahead commitments, which 
must be covered by market purchases of energy at a premium, or a penalty, 
that captures the social costs of last-minute activation of expensive marginal 
producers. We model penalties in the form: 

P = (Qbid - QDA) (PRT + α|PRT - PDA|) 

where Qbid is the volume bid in day-ahead, QDA is the volume available for 
DA at the time of dispatch, PRT and PDA are the real-time and day-ahead 
prices, and α is a tuning parameter that captures an increase in penalties. The 
structure of the penalties here is that any shortage in production against day-

6.2  |  Results
In this section, we explore the quantitative results from the modeling exercise. 
First, we survey the performance of the wind farms without storage, to 
understand how forecast uncertainty and congestion act to reduce wind farm 
revenue. Next, we take a closer look at the temporal results of how storage 
integrates with wind farms, when specifications correspond to “pumped-
hydro like” storage. Finally, we extend our evaluation to survey aggregate 
results for a variety of storage specifications across a number of scenarios 
corresponding to future penetration of renewables.   

6.2.1  |  Results without Storage 

Figure 3 contrasts the 24-hour wind forecast available for trading decisions 
with actual wind production for the same wind farm. The wind forecast tracks 
production closely on average, in aggregate. However, the hourly forecast’s 
ability to correctly predict hourly production is relatively low, and at times, 
production is not just at odds with average forecast, but even with the +/- 
40% probability envelope (see for example Jan 4th or Jan 9th). 
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ahead commitments is covered at the real-time market price and an additional 
payment capturing the DA-RT spread (the DART), which is a reasonable hourly 
proxy for the tightness of supply. 

In the case of this wind farm with the forecasts and production in figure 3, 
the mean annual revenue from the farm under the virtual PPA is around $18.6 
mn, whereas the worst case scenario revenue is $9.2 mn, and the best case 
revenue is $26.5 mn.

To capture the impact of storage on the risk & returns for merchant-exposed 
wind farms, we use the mean and standard deviation of net present value 
(NPV) as indices of profitability. For two projects with identical mean NPVs, 
lower volatility of returns would indicate lower risk, and therefore should 
result in a lower cost of capital. Although investors certainly care about both 
downside and upside risk, infrastructure developers are generally risk-averse 
and more focused on downside risk scenarios. 

Therefore, we focus in this work on the normalized downside risk spread, 
which corresponds to the difference in revenue between the mean and worst 
case scenario, normalized by mean revenue. Given the value of storage in 
addressing both downside and upside risk, this assumption is conservative. 
For this farm, this value corresponds to a normalized downside risk of 51%. 
The caveat is that the downside risk scenario modelled here was an aggressive 
one that corresponds to a scenario where consistently low wind persists for 
an entire year. With this context in mind, the results for downside risk can 
be roughly interpreted to mean that almost half the project’s revenue is not 
guaranteed due to forecast uncertainty and basis risk, under base conditions 
(current market basis and penalty of ~25% of DART). For the two other wind 
farms considered in this analysis, the normalized downside risk spread is 52% 
and 56% under the base conditions. 

6.2.2  |  The Impact of Storage - Pumped Hydro Storage like Example  

As shown in the previous section, a significant amount of revenue from the 
wind farms is at risk in the virtual PPA environment, when exposed to basis and 
forecast uncertainty. The co-optimization of energy storage will be shown here 
to be an effective risk management tool. Before exploring the aggregate results, 
it may be instructive to showcase an example of how the combined wind plus 
storage behaves. In the following set of figures, we zoom in on a week in the 
winter, with a focus on pumped-hydro like storage performance. 

Figure 4 shows the dispatch for the wind farm and storage asset. Tracking the 
DA commitments first, it is clear that they are a complex function of expected 
production volumes and prices. On the 8th of January for example, large DA 
commitments are made while production volumes drop significantly almost 
abruptly (possibly due to a drop in temperature). This “white” gap corresponds 
to a shortage where a penalty is paid. The storage asset does intervene and 
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Given the rich and multi-faceted nature of the wind-plus-storage co-
optimization, we switch gears to tracking the mean and downside risk 
management impact of adding storage. Table 3 summarizes the results with 
and without storage for the three wind farms. Pumped hydro-like storage 
results in a modest impact of risk and return for farm (1), a sizeable impact on 
farm (2), and a significant impact on farm (3).

Figure 4
  
Sample results for 1 week 
of dispatch from a wind 
farm in SPP, operating in 
a day-ahead / real-time 
market structure, with 
a co-optimized storage 
asset (specifications 
corresponding to a 
pumped-hydro-like energy 
storage asset).

Figure 5
  
Sample results for 1 
week showing the state 
of charge evolution of 
a co-optimized storage 
asset (specifications 
corresponding to a 
pumped-hydro-like energy 
storage asset) attached 
to a wind farm in SPP, 
operating in a day-ahead / 
real-time market structure. 

provide parts of the shortage, entering the 9th of January with a significantly 
reduced state of charge. 

In addition to covering missed commitments, the storage asset also actively 
arbiters around congestion and prices. For example, the storage asset charges up 
during the 7th of January when there is excess wind production over committed 
in DA, accompanied by a drop in real-time prices. A similar but shorter cycle 
can be tracked between January 3rd and January 5th, with a series of charge & 
discharge cycles corresponding to congestion and price arbitrage activity. 
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Table 3
  
Summary of results for 
three wind farms in SPP, 
operating with and without 
a storage asset (whose 
specifications correspond 
to a pumped-hydro like 
storage technology), 
demonstrating the impact 
of storage on the risks and 
returns of the projects. 

Table 4
  
Summary of results 
for three wind farms 
in SPP, operating 
with a storage asset 
whose specifications 
correspond to currently 
available short duration 
storage technology 
using state-of-the-art 
lithium ion technology, 
demonstrating the limited 
impact of this storage 
technology on the 
risks and returns of the 
projects. 

Wind Storage  Optimal Optimal Mean virtual Worst Case Downside
Farm technology  Duration  Power  PPA NPV NPV risk
   (hrs) (MW) (MM USD) (MM USD) 

  1 2020 Li 1 2 18.9 (+2%) 9.2 51% (-0%)

  2 2020 Li 1 13.5 17.0 (+1%) 8.3 51% (-1%)

  3 2020 Li 1.4 137 17.7 (+27%) 8.5 52% (-6%)

For comparison, we also modeled one version of short duration storage 
technology using state-of-the-art Lithium ion, with costs estimated for 2025. 
We estimate the costs to be around $190/kWh and $178/kW at a 90% round-
trip efficiency (based on NREL’s plant-level cost estimates). As expected, the 
optimal durations were short (<1.5 hrs) while the impact on mean returns and 
downside risk was minimal for all farms, except for farm 3, where a short cycle 
arbitrage unlocked 27% in mean returns though had a limited impact on risk. 
These findings are consistent with our hypothesis that wind farm merchant risk 
management requires longer durations of storage because of the fundamental 
structure of forecast uncertainty and wind correlated congestion patterns. 

6.2.3  |  Sensitivity Analysis 

The results above represent for the most part the current state of the world, where 
wind farms are subject to relatively moderate congestion conditions and market 
penalties for missing commitments. To explore how these results might change 
as more renewables come online, we repeat the same analysis for a variety of 
scenarios capturing a linear increase in basis over time (i.e. with the same shape, 
the difference in prices between hub and node goes up by a linear fraction across 
all hours). We also model scenarios with larger penalties, one mechanism markets 
may use to price-in the externalities of intermittency onto market players. 

Wind Storage  Optimal Optimal Mean virtual Worst Case Downside Downside
Farm technology  Duration  Power  PPA NPV NPV risk risk
   (hrs) (MW) (MM USD) (MM USD)  variation

  1 No Storage N/A N/A 18.6 9.2 51% -

 Pumped 
 Hydro 13 36 19.2 (+3%) 9.7 49% -2%

  2 No Storage N/A N/A 16.9  8.2 51% -

 Pumped 
 Hydro 17 108 19.0 (+12%) 10.2 46% -6%

  3 No Storage N/A N/A 13.9 6.1 56% -

 Pumped 
 Hydro 23 106 20.7 (+49%) 11.1 46% -10%
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Figure 6
  
Sensitivity analysis 
contrasting the impact 
of a pumped-hydro like 
storage technology (solid 
triangles) to without 
storage (hollow triangle) 
on the risk and returns 
of a wind farm in SPP, 
operating in a day-ahead / 
real-time market structure 
under a contract-for-
differences arrangement. 
Results show the impact 
of storage across a 
range of scenarios of 
penalties and basis risks, 
corresponding to potential 
future scenarios of 
renewables deployment. 

Figure 6 shows the sensitivity of the mean returns and normalized downside 
risk to an increase in basis and penalties for wind farm (1). The impact of higher 
penalties is clear: they act to increase the cost of forecast uncertainty, and 
therefore, increase risks. On the other hand, the primary impact of basis is to 
reduce mean profits by eating at wind production revenue. Storage (solid labels) 
consistently improves mean returns over baseline and reduces downside risk. 
Here, storage provides backup energy to mitigate forecast errors when they 
are most expensive, and provides a time-shifting mechanism for production to 
circumvent high congestion costs. Across the data points shown in this figure, 
the optimal duration of storage is between 13 and 14 hours, with a strong 
and positive monotonic relationship between penalty levels and total energy 
storage required (in MWhs of capacity). 

The impact of duration on returns can be further highlighted by computing the 
returns for a range of durations, while fixing other cost and efficiency variables. 
Figure 7 shows how incremental returns (the improvement in returns through 
the addition of storage) are impacted by duration for a merchant-risk exposed 
wind farm. For durations less than 5 hours, the impact of storage on returns 
remains limited, then increases linearly to around 10 and plateaus at around 
13 hours. Beyond 15 hours, incremental returns drop linearly, reflecting the 
limited marginal value of additional storage and the pressure the storage CapEx 
imposes on returns. In the simulations shown in this paper, the optimization 
algorithm automatically determines the optimal duration that maximizes 
returns, and we report results based on this optimal configuration. 
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Figure 7
  
Incremental returns fall 
off rapidly when more 
than ~10% away from the 
optimal ESS size.

It is instructive here to contrast the above results with those of short duration 
storage, exemplified by 2025 Lithium ion technology, shown in figure 8. The 
impact of basis and penalty on the baseline results remains the same. However, 
it is evident in this case storage has a weaker impact on both mean returns and 
downside risk. The optimal duration of storage deployed across the cases here 
is around 1 hour. The long duration nature of these applications is well captured 
by the difference in impact on both risk and returns by the “pumped-hydro like” 
storage as compared with 2025 Lithium ion technology. 

Figure 8
  
Sensitivity analysis 
contrasting the impact 
of today’s lithium ion 
short duration storage 
technology (solid triangles) 
to without storage (hollow 
triangle) on the risk and 
returns of a wind farm 
in SPP, operating in a 
day-ahead / real-time 
market structure under a 
contract-for-differences 
arrangement. Results show 
the limited ability currently 
available short duration to 
manage volume and basis 
risks, corresponding to 
potential future scenarios 
of renewables deployment. 

In
cr

em
en

ta
l R

et
ur

ns
, k

$/
M

W

1.0

Hours

1.5

2.0

2.5

5 10 15 20

None

Normalized Downside Risk

95,000

65,000

70,000

75,000

80,000

85,000

90,000

0.45 0.55 0.65 0.75 0.85

0.25 - 1.0x DART 2.0x DART

2018 
level basis

1.25x - 1.5x

2x baseline

M
ea

n 
R

et
ur

ns
, $

/M
W

With storage No storage

Penalties



29

6  |  Quantitative Analysis

To explore whether these findings were consistent across potential storage 
technologies, we repeat the above analysis for all the combinations explored in 
section 6.1.2 In each case, we optimize the wind farm dispatch in day-ahead and 
real-time, accounting for penalties and the basis risk arising from price differences 
between the settlement hub and the production node, computing the optimal 
storage duration (if any) in the process. We run this analysis for the current state 
of a wind farm in SPP, as well as an extrapolated future case where basis risk 
increases by 50% and penalties for missing forecasts rise to 0.5 DART. Figures 
9 and 10 show the variation of returns and risks versus optimal durations for a 
variety of energy capex levels. Two clear trends emerge. The first trend is that 
longer duration storage is correlated with an improvement in both returns and 
risks, with a tendency for the impact to be maximized around 9-11 hours. The 
second trend is that longer durations are optimal when energy capex costs are 
lower, as one might expect. 

Figure 9
  
The correlation between 
optimal duration and 
incremental profits and 
risks, as well as the 
underlying energy capex 
costs (in $/kWh) and 
resulting project size 
(in MW), for an SPP 
wind farm under today’s 
conditions of basis risk 
and penalties. 
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To further resolve the value of storage in risk management, and the design trade-
offs involved, the following set of surface plots provide a different view of energy 
capex, roundtrip efficiency, again for the same wind farm under current and future 
basis & penalty trajectories, with depth of color representing the incremental 
profits and risks associated with combining storage with a merchant risk exposed 
wind farm. The contours plots show results corresponding to the lowest power 
capex level included in the design space, $100/kW. Consistently, the results show 
a clear relationship between lower energy capex costs (which drive longer optimal 
durations) and higher incremental profits as well as lower incremental risks, with 
roundtrip efficiency contributing on the margin. This trend is consistent for current 
and future scenarios of basis risk & penalties. 

Figure 10
  
The correlation between 
optimal duration and 
incremental profits and 
risks, as well as the 
underlying energy capex 
costs (in $/kWh) and 
resulting project size 
(in MW), for an SPP 
wind farm under future 
conditions of basis risk 
and penalties. 
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Figure 11
  
Contour plot of the impact 
of energy capex costs 
(in $/kWh) and roundtrip 
efficiency on incremental 
profits for an SPP wind 
farm under current 
conditions of basis risk 
and penalties. 

Figure 12
  
Contour plot of the impact 
of energy capex costs 
(in $/kWh) and roundtrip 
efficiency on incremental 
risks for an SPP wind farm 
under current conditions 
of basis risk and penalties. 
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Figure 13
  
Contour plot of the impact 
of energy capex costs 
(in $/kWh) and roundtrip 
efficiency on incremental 
profits for an SPP wind 
farm under future 
conditions of basis risk 
and penalties.  

Figure 14
  
Contour plot of the impact 
of energy capex costs 
(in $/kWh) and roundtrip 
efficiency on incremental 
risk for an SPP wind farm 
under future conditions of 
basis risk and penalties. 
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Figure 15
  
Contour plot of the 
impact of energy capex 
costs (in $/kWh) and 
roundtrip efficiency on 
incremental profits for 
an SPP wind farm under 
current conditions of basis 
risk and penalties, with a 
surface slice at the $562/
kW power capex level.  

Figure 16
  
Contour plot of the impact 
of energy capex costs 
(in $/kWh) and roundtrip 
efficiency on incremental 
risks for an SPP wind farm 
under current conditions 
of basis risk and penalties, 
with a surface slice at the 
$562/kW power capex 
level. 

The trends are also consistent when higher power capex surfaces are showcased 
in the contour plots. Figures 15 and 16 show the contour plots selected for a 
specific power capex level, $562/kW. As expected, the impact on incremental 
profits and risks is much less pronounced given the higher total cost of the storage 
embodiments highlighted in this surface slice. 
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Figure 17
  
Contour plot of the impact 
of energy capex costs 
(in $/kWh) and roundtrip 
efficiency on incremental 
risks for SPP wind 
farm (2) under current 
conditions of basis risk 
and penalties.

Figure 18
  
Contour plot of the impact 
of energy capex costs 
(in $/kWh) and roundtrip 
efficiency on incremental 
risks for SPP wind 
farm (2) under current 
conditions of basis risk 
and penalties.

The results are persistent for the other wind farms modeled in this work, 
although the optimal durations, the risk / return trends and their exact levels 
vary with the price signal, the strike price of the virtual PPA and the correlation 
of wind production with the basis and price signals. Figures 17 – 20 show the 
results for the other two wind farms across the storage specification space 
demonstrating similar trends, with varying risk and return levels, depending on 
the wind farm conditions. 
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Figure 19
  
Contour plot of the impact 
of energy capex costs 
(in $/kWh) and roundtrip 
efficiency on incremental 
returns for SPP wind farm 
(3) under current conditions 
of basis risk and penalties.

Figure 20
  
Contour plot of the impact 
of energy capex costs 
(in $/kWh) and roundtrip 
efficiency on incremental 
risks for SPP wind 
farm (3) under current 
conditions of basis risk 
and penalties.
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6.3  |  Summary of Storage Impact
In summary, the quantitative analysis presented in this section provides a 
methodology for dispatch optimization for real-time and day-ahead operation 
and quantifies asset exposure to volume risk (due to forecast uncertainty) and 
basis risk. Building on this methodology, we provide a quantitative framework 
to evaluate the ability of storage to improve utility scale project risk and 
return, across a variety of storage technologies. We use this framework to 
understand storage specifications necessary to achieve target levels of risk 
management for a variety of wind farms. We show how a pumped-hydro 
like storage technology will result in optimal durations between 13 and 23 
hours and offer a significant improvement in risk and returns, in contrast with 
today’s short duration storage which results in 1-2 hours of optimal durations 
and much more limited ability to modulate risk and returns. The specific target 
performance criteria for storage will depend on a specific investor’s risk and 
return preferences. 
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Conclusions 

In this work, we highlight the impact of corporate PPAs as a major driver for 
renewables penetration, and their value in reducing the cost of capital for new 
projects. With deeper renewables penetration, the costs of intermittency are 
increasing. In a deregulated market environment, these costs manifest as 
increased volume and basis risks that are borne by developers and off-takers. 
Effective management of increased intermittency risks is critical, if we are to 
see continued expansion of corporate PPAs as a driving force for renewable 
deployment. 

We focus here on the use of physical storage technologies for risk management; 
specifically, we look at effective risk management via novel long duration storage 
technologies. We utilize Form’s asset optimization software, FormWare™, to 
offer a flexible and technology-agnostic methodology to simulate financially-
settled and long-term contracted wind farms operating in a day-ahead / real-time 
market structure and we explore the distribution of asset returns, using real data 
from anonymized wind farms owned and operated by Enel Green Power. 

Through this analysis, we provide a quantitative framework to demonstrate 
the ability of storage to manage risk and return for wind farms exposed to 
volume and basis risk factors. We explore a range of representative storage 
specifications, using a pumped-hydro like storage technology to showcase 
the risk management capabilities of this emerging asset class. The results are 
persistent across the wind farms modeled and demonstrate the impact of bulk 
energy storage technologies to effectively manage risks and maximize returns. 
While general trends emerge, the specific performance thresholds for storage 
will vary by project configuration and technology. To our knowledge, this paper 
represents the first attempt in the literature to jointly quantify risk and return of 
renewable and storage assets operated in a realistic day-ahead and real-time 
market structure with imperfect foresight, in an attempt to more accurately 
capture the trader’s perspective.

The future of renewable energy is bright and windy, and though the rising 
variability risks present a roadblock on the path to complete decarbonization, 
we are confident that the next wave of innovation in storage technologies, and 
specifically in ultra-low-cost, long duration technologies, will address emerging 
concerns and enable the rapid pace needed to manage the greatest challenge 
of our generation: matching economic prosperity and environment protection. 
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